Light Quark Yukawa's Snowmass Energy Frontier Workshop Restart September 1, 2021 Christophe Grojean with the (great) help of Lina Alasfar, Ramona Gröber, Ayan Paul and Zhuoni Qian (and the Higgs@FC ECFA team) ## Why looking at light Yukawa's? The knowledge of the values of the **Higgs couplings** is essential to understand the deep structure of matter/Universe ``` m_{W, m_Z} \leftrightarrow Higgs couplings lifetime of stars (why t_{Sun} \sim t_{life evolution}?) ``` Obvious that Higgs mechanism is at the origin of the light masses? Well, it was also obvious in the 50's that weak interactions are parity invariant... ## Which Scale? Flavour agnostic $$\kappa_q \equiv \frac{y_q}{N^2} |H|^2 \bar{\psi} H \psi \quad \Longrightarrow \quad \kappa_q \equiv \frac{y_q}{y_q^{\rm SM}} = 1 + c_q \frac{v^3}{m_q \Lambda^2} \quad \Longrightarrow \quad \ker_q = \frac{v_q}{m_q \frac{v_q}{m_q$$ $$\frac{c_{ij}}{\Lambda^2}|H|^2\bar{\psi}H\psi \quad \Longrightarrow \quad \kappa_q \equiv \frac{y_q}{y_q^{\rm SM}} = 1 + c_q \frac{v^3}{m_q\Lambda^2} \quad \Longrightarrow \quad \begin{cases} \kappa_u = 1000 \to \Lambda = 3\,\text{TeV} \\ \kappa_d = 100 \to \Lambda = 5\,\text{TeV} \\ \kappa_s = 10 \to \Lambda = 4\,\text{TeV} \\ \Delta\kappa_c = 1 \to \Lambda = 3.5\,\text{GeV} \end{cases}$$ but need to pay attention to FCNC (generically ∧>1000 TeV) large deviations in light Yukawa likely excluded by flavour data \rightarrow don't waste time probing with Higgs Minimal Flavour Violation $$\frac{c\,Y_{ij}^{SM}}{\Lambda^2}|H|^2\bar{\psi}_iH\psi_j$$ $$\frac{c Y_{ij}^{SM}}{\Lambda^2} |H|^2 \bar{\psi}_i H \psi_j \qquad \qquad \qquad \kappa_q = 1 + c_q \frac{v^2}{\Lambda^2} \qquad \qquad \qquad \qquad \qquad \begin{pmatrix} \kappa_q = 100 \to \Lambda = 20 \,\text{GeV} \\ \kappa_q = 0.1 \to \Lambda = 800 \,\text{GeV} \end{pmatrix}$$ usually fine with respect to flavour data $(\Lambda > O(few) TeV)$ fine with flavour but signal very difficult to see in Higgs physics (except maybe for charm quark) #### Challenge build flavour models that avoid large FCNC and still generate large deviations in light Yukawa's interesting model building: Spontaneous Flavour Violation or Aligned Flavour Violation Delaunay, Grojean, Perez '13 Egana-Ugrinovic, Homiller, Meade, '18 Bar-Shalom, Soni, '18 ## Which Scale? Flavour agnostic $$\kappa_q \equiv \frac{y_q}{N^2} |H|^2 \bar{\psi} H \psi \quad \Longrightarrow \quad \kappa_q \equiv \frac{y_q}{y_q^{\rm SM}} = 1 + c_q \frac{v^3}{m_q \Lambda^2} \quad \Longrightarrow \quad \ker_q = \frac{v_q}{m_q \frac{v_q}{m_q$$ $$\frac{c_{ij}}{\Lambda^2}|H|^2\bar{\psi}H\psi \quad \Longrightarrow \quad \kappa_q \equiv \frac{y_q}{y_q^{\rm SM}} = 1 + c_q \frac{v^3}{m_q\Lambda^2} \quad \Longrightarrow \quad \begin{cases} \kappa_u = 1000 \to \Lambda = 3\,\text{TeV} \\ \kappa_d = 100 \to \Lambda = 5\,\text{TeV} \\ \kappa_s = 10 \to \Lambda = 4\,\text{TeV} \\ \Delta\kappa_c = 1 \to \Lambda = 3.5\,\text{GeV} \end{cases}$$ but need to pay attention to FCNC (generically ∧>1000 TeV) large deviations in light Yukawa likely excluded by flavour data \rightarrow don't waste time probing with Higgs Minimal Flavour Violation $$\frac{c\,Y_{ij}^{SM}}{\Lambda^2}|H|^2\bar{\psi}_iH\psi_j$$ $$\frac{c Y_{ij}^{SM}}{\Lambda^2} |H|^2 \bar{\psi}_i H \psi_j \qquad \qquad \qquad \kappa_q = 1 + c_q \frac{v^2}{\Lambda^2} \qquad \qquad \qquad \qquad \qquad \begin{pmatrix} \kappa_q = 100 \to \Lambda = 20 \,\text{GeV} \\ \kappa_q = 0.1 \to \Lambda = 800 \,\text{GeV} \end{pmatrix}$$ usually fine with respect to flavour data $(\Lambda > O(few) TeV)$ fine with flavour but signal very difficult to see in Higgs physics (except maybe for charm quark) #### Challenge build flavour models that avoid large FCNC and still generate large deviations in light Yukawa's interesting model building: Spontaneous Flavour Violation or Aligned Flavour Violation Delaunay, Grojean, Perez '13 Egana-Ugrinovic, Homiller, Meade, '18 Bar-Shalom, Soni, '18 ## PROBING LIGHT QUARK YUKAWAS #### inclusive rates Delaunay, Golling, Perez, YS, 1310.7029 Perez, YS, Stamou, Tobioka, 1505.06689, 1503.00290 Brivio, Goertz, Isidori, 1507.02916 ATLAS, 1407.0608 ATLAS, 1501.01325 ATL-PHYS-PUB-2015-001 #### exclusive rates $(h \rightarrow \gamma V)$ Bodwin, Petriello, Stoynev, Velasco, 1306.5770 Kagan, Perez, Petriello, YS, Stoynev, Zupan, 1406.1722 Bodwin, Chung, Ee, Lee, Petriello 1407.6695 Perez, YS, Stamou, Tobioka 1503.00290 Koing, Neubert, 1505.03870 ATLAS, 1501.03276, 1607.03400 CMS, 1507.03031 #### Higgs kinematics Bishara, Haisch, Monni, Re 1606.09253 YS, Zhu, Zupan 1606.09621 #### Higgs production Zhou, 1505.06369 Yu 1609.06592 ### Yukawa's from Global Fits $$\mathcal{O}_6 = -\lambda |H|^6$$ | $\mathcal{O}_{\mathcal{H}}= rac{1}{2}(\partial_{\mu} \mathcal{H}^{2})^{2}$ | $\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}\mathit{G}_{\mu u }^{A}\mathit{G}^{A,\mu u }$ | |---|--| | $\mathcal{O}_{ extsf{WW}} = g^2 extsf{H} ^2 extsf{W}^{ extsf{a}}_{\mu u} extsf{W}^{ extsf{a},\mu u}$ | $\mathcal{O}_{y_u} = y_u \mathcal{H} ^2 \bar{q}_L \tilde{\mathcal{H}} u_R + \text{h.c.}$ | | $\mathcal{O}_{BB} = g^{\prime 2} H ^2 B_{\mu u}^{\ \ \prime} B^{\mu u}$ | $\mathcal{O}_{y_d} = y_d H ^2 \overline{q}_L H d_R + \text{h.c.}$ | | $\mathcal{O}_{ extit{HW}} = extit{ig} (extit{D}^{\mu} extit{H})^{\dagger} \sigma^{ extit{a}} (extit{D}^{ u} extit{H}) extit{W}^{ extit{a}}_{\mu u}$ | $\mathcal{O}_{y_e} = y_e \mathcal{H} ^2 \overline{I}_L \mathcal{H} e_R + \text{h.c.}$ | | $\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu u}$ | $\mathcal{O}_{3W}= rac{1}{3!}g\epsilon_{abc}W_{\mu}^{a u}W_{ u ho}^{b}W^{c ho\mu}$ | | ${\cal O}_{\it W}= rac{\it ig}{2}({\it H}^{\dagger}\sigma^{\it a}\overleftrightarrow{D_{\mu}}{\it H}){\it D}^{ u}{\it W}_{\mu u}^{\it a}$ | $\mathcal{O}_{\mathcal{B}} = rac{i g'}{2} (\mathcal{H}^\dagger \overleftrightarrow{\mathcal{D}_\mu} \mathcal{H}) \partial^ u \mathcal{B}_{\mu u}$ | | ${\cal O}_{WB} = g g' H^\dagger \sigma^a H W^a_{\mu u} B^{\mu u}$ | $\mathcal{O}_{H\ell} = i H^\dagger \overleftrightarrow{D_\mu} H \overline{\ell}_L \gamma^\mu \ell_L$ | | ${\cal O}_{\it T}= rac{1}{2}({\it H}^{\dagger} \overleftrightarrow{D_{\mu}} {\it H})^2$ | $\mathcal{O}_{H\ell}' = i H^\dagger \sigma^a \overleftrightarrow{D_\mu} H ar{\ell}_L \sigma^a \gamma^\mu \ell_L$ | | $\mathcal{O}_{\ell\ell} = (\bar{\ell}_{L}\gamma^{\mu}\ell_{L})(\bar{\ell}_{L}\gamma_{\mu}\ell_{L})$ | ${\cal O}_{He}={\it i}{\it H}^{\dagger} \overleftrightarrow{D_{\mu}} {\it H} ar{e}_{\it R} \gamma^{\mu} {\it e}_{\it R}$ | | $\mathcal{O}_{ extit{Hq}}= extit{i} H^\dagger \overrightarrow{D_\mu} H \overline{ extit{q}}_{ extit{L}} \gamma^\mu q_{ extit{L}}$ | $\mathcal{O}_{ extit{Hu}} = i H^\dagger \stackrel{\longleftarrow}{D_\mu} H \overline{u}_R \gamma^\mu u_R$ | | $\mathcal{O}_{ extit{Hq}}^{\prime}=i extstyle{H}^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}} extstyle{H}\overline{ extst{q}}_{ extstyle{L}}\sigma^{a}\gamma^{\mu} extstyle{q}_{ extstyle{L}}$ | $\mathcal{O}_{ extit{Hd}}= extit{i} H^\dagger \overleftrightarrow{D_\mu} H \overline{d}_R \gamma^\mu d_R$ | - ► SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$) - ► Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$) - ▶ Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB}) Flavour assumptions flavour universality: 19 flavour diagonality: 31-33 c, b, t, μ, τ Yukawa only U(2) symmetry among 2 first quark generations BRinv and BRuntagged to take into account light quark generations ## Yukawa's from Global Fits | kappa-3 scenario | HL-LHC | HL-LHC + LHeC | HL-LHC + HE-LHC (S2) | HL-LHC + HE-LHC (S2') | | | |----------------------------------|---|---------------|----------------------|-----------------------|--|--| | $1 \geq \kappa_W > (68\%)$ | 0.985 | 0.996 | 0.988 | 0.992 | | | | $1 \geq \kappa_Z > (68\%)$ | 0.987 | 0.993 | 0.989 | 0.993 | | | | $\kappa_{g}~(\%)$ | ±2. | ±1.6 | ±1.6 | $\pm 1.$ | | | | $\kappa_{\gamma}\left(\% ight)$ | ±1.6 | ±1.4 | ±1.2 | ± 0.82 | | | | $\kappa_{Z\gamma}\left(\% ight)$ | $\pm 10.$ | ±10. * | ±5.5 | ± 3.7 | | | | κ_c (%) | _ | ±3.7 | _ | _ | | | | κ_t (%) | ±3.2 | ±3.2 * | ± 2.6 | ± 1.6 | | | | κ_b (%) | ±2.5 | ±1.2 | $\pm 2.$ | ± 1.4 | | | | κ_{μ} (%) | ± 4.4 | ±4.4 * | ± 2.2 | ± 1.5 | | | | $\kappa_{ au}$ (%) | ±1.6 | ±1.4 | ±1.2 | ± 0.77 | | | | BR _{inv} (<%, 95% CL) | 1.9 | 1.1 | 1.8 * | 1.5 * | | | | BR _{unt} (<%, 95% CL) | inferred using constraint $ \kappa_V \leq 1$ | | | | | | | | 4. | 1.3 | 3.3 | 2.4 | | | **Table 13.** Upper bounds on the κ_i for u, d, s and c (at hadron colliders) at 95% CL, obtained from the upper bounds on BR_{unt} in the kappa-3 scenario. | | HL-LHC | +LHeC | +HE-LHC | +ILC ₅₀₀ | +CLIC ₃₀₀₀ | +CEPC | +FCC-ee ₂₄₀ | +FCC-ee/eh/hh | |-----------------------------|--------|-------|---------|---------------------|-----------------------|-------|------------------------|---------------| | κ_u | 560. | 320. | 430. | 330. | 430. | 290. | 310. | 280. | | κ_d | 260. | 150. | 200. | 160. | 200. | 140. | 140. | 130. | | \mathcal{K}_{S} | 13. | 7.3 | 9.9 | 7.5 | 9.9 | 6.7 | 7. | 6.4 | | $\mathcal{K}_{\mathcal{C}}$ | 1.2 | | 0.87 | measured directly | | | | | # Higgs Kinematics (valence quarks) valance quarks carry larger fraction of the proton momentum \rightarrow more forward yh spectrum gluons has stronger radiation than quarks \rightarrow softer pT spectrum in presence of quark fusion $$\kappa_u \sim 2000$$ $$\kappa_u \sim 8000$$ # Higgs Kinematics (valence quarks) valance quarks carry larger fraction of the proton momentum \rightarrow more forward yh spectrum gluons has stronger radiation than quarks \rightarrow softer pT spectrum in presence of quark fusion $$\bar{\kappa}_q = \frac{y_q^{\text{exp}}}{y_b^{\text{SM}}}$$ Soreq, Zhu, Zupan, # Higgs Kinematics (heavier quarks) quark contribution to ggF production is chirality suppressed but charm is special bc of non-Sudakov double logs # Higgs Kinematics (heavier quarks) quark contribution to ggF production is chirality suppressed but charm is special bc of non-Sudakov double logs "Higgs without Higgs" philosophy Henning, Lombardo, Riembau, Riva '18 modified Yukawa spoils cancelation of energy growing terms in amplitudes → large effects in the tails #### WWW: same-sign di-lepton final state - Process: $pp \to W^{\pm}W^{\mp} \to \ell^{\pm}\ell^{\pm}\nu\nu jj$ cross-section: $\sigma(Y_d) = 7.5\,\mathrm{fb} + Y_d^2 \times 210\,\mathrm{fb}$ - Improve **HL-LHC** sensitivity by **more stringent** cuts $$p_T^{\ell_{1,2}}>60\,{ m GeV}$$, $E_T^{ m miss}>120\,{ m GeV}$, $p_T^{jj}>120\,{ m GeV}$, $|\Delta\eta(\ell_1,\ell_2)|<2$, $$\epsilon_S=~0.61~{ m (HL-LHC)}$$ $$\epsilon_B=~0.015~{ m (HL-LHC)}$$ (With **pTII differential distribution** shape) Falkowski, Ganguly, Gras, No, Tobioka, Vignaroli, You '20 ### WWW: tri-lepton final state • Process $pp \to W^{\pm}W^{\pm}W^{\mp} \to \ell^{\pm}\ell^{\mp}\nu\nu\nu$ #### **HL-LHC**: $$p_T^{\ell_1} > 70 \,\mathrm{GeV} \,, \; p_T^{\ell_2} > 50 \,\mathrm{GeV} \,, \; p_T^{\ell_3} > 30 \,\mathrm{GeV} \,, \; E_T^{\mathrm{miss}} > 80 \,\mathrm{GeV} \,, \; |\Delta \Phi(\ell^\pm, \ell^\pm)| > 2 \,$$ #### FCC-hh: $$p_T^{\ell_1} > 150 \,\mathrm{GeV}\,, \ p_T^{\ell_2} > 80 \,\mathrm{GeV}\,, \ p_T^{\ell_3} > 50 \,\mathrm{GeV}\,, \ E_T^{\mathrm{miss}} > 120 \,\mathrm{GeV}\,, \ |\Delta\Phi(\ell^\pm,\ell^\pm)| > 1.5$$ $$\epsilon_S = 0.62 \text{ (HL-LHC)} , \quad \epsilon_S = 0.50 \text{ (FCC-hh)},$$ $\epsilon_B = 0.037 \text{ (HL-LHC)} , \quad \epsilon_B = 0.014 \text{ (FCC-hh)}.$ #### (Reducible background negligible) Falkowski, Ganguly, Gras, No, Tobioka, Vignaroli, You '20 ### ZZZ: four-lepton final state • Process $pp o ZZZ o 4\ell + 2\nu$ cross-section: $\sigma(Y_d) = 0.013\,\mathrm{fb} + Y_d^2 imes 1.8\,\mathrm{fb}$, $P_T^{\ell_1}$ (GeV) $$p_T^{\ell_{1,2}} > 25 \text{ GeV}, \, p_T^{\ell_{3,4}} > 10 \text{ GeV}, \, |\eta_\ell| < 2.5, \, \Delta R_{\ell\ell} > 0.1, \, |m_Z - m_{\ell\ell}| < 10 \text{ GeV}.$$ **HL-LHC**: $$E_T^{\rm miss} > 200~{\rm GeV}$$ FCC-hh: $$\Delta R_{\ell\ell} > 0.01$$ $E_T^{\rm miss} > 500~{\rm GeV}$ (Using ETmiss differential distribution shape) $$\delta y_d \lesssim 1500 \quad (\text{HL-LHC}) \quad , \quad \lesssim 65 \quad (\text{FCC-hh}) \, ,$$ $$\delta y_u \lesssim 2300 \quad (\text{HL-LHC}) \quad , \quad \lesssim 100 \quad (\text{FCC-hh}) \, ,$$ $$\delta y_s \lesssim 300 \quad (\text{HL-LHC}) \quad , \quad \lesssim 12 \quad (\text{FCC-hh}) \, .$$ Falkowski, Ganguly, Gras, No, Tobioka, Vignaroli, You '20 E^{miss} (GeV) • 2 σ sensitivity estimates $\mathcal{L} \supset -\frac{h}{v} \sum_{q=u,d,s} m_q (1+\delta y_q) \bar{q} q$ | | | WWW | ZZZ | | | | |--------------|------------------------------------|---|----------|----------------|--------------|-----------| | | $\ell^{\pm}\ell^{\pm} + 2\nu + 2j$ | $\ell^{\pm}\ell^{\pm}\ell^{\mp} + 3\nu$ | Comb. | $4\ell + 2\nu$ | $4\ell + 2j$ | Comb. | | δy_d | 430 (36) | 840 (54) | 420 (34) | 1500 (65) | 1300 (93) | 1100 (60) | | δy_u | 850 (71) | 1700 (110) | 830 (68) | 2300 (100) | 1800 (140) | 1600 (92) | | δy_s | 150 (13) | 230 (33) | 140 (13) | 300 (12) | 290 (16) | 250 (11) | HL-LHC sensitivity (FCC-hh sensitivity) • Dimension-6 operator scale $\mathcal{L}_{\text{SMEFT}} \supset \frac{Y_u |H|^2}{v^2} \bar{u}_R Q_{1,L} H + \frac{Y_d |H|^2}{v^2} \bar{d}_R H^{\dagger} Q_{1,L} + \frac{Y_s |H|^2}{v^2} \bar{s}_R H^{\dagger} Q_{2,L} + \text{h.c.}$ $$\delta y_q = -\frac{Y_q}{y_q^{\rm SM}}$$ $$Y_i = C_i v^2 / \Lambda^2$$ # Yukawa's from Higgs² production large Yukawa's for light quarks → new (dominant) contribution to HH production Alasfar, Corral Lopez, Gröber, '19 see also, Egana-Ugrinovic, Homiller, Meade, '21 $$g_{hhq_i\bar{q}_i} = -\frac{3}{2} \frac{1 - \kappa_q}{v} g_{hq_i\bar{q}_i}^{\text{SM}},$$ HH more sensitive than H because of SM negative interference in HH but h³ coupling is also largely unknown ## Yukawa's from Higgs² production Alasfar, Gröber, Grojean, Paul, Qian, in progress ## Yukawa's from Higgs² production Alasfar, Gröber, Grojean, Paul, Qian, in progress ## Summary Determination of light Yukawa's is challenging. Surprising that very different processes lead to bounds in the same ballpark at HL-LHC. Still true at Future Colliders, in particular FCC-hh? Simple flavour structures, like MFV, likely out of reach at HL-LHC. Other flavour structures, like Spontaneous Flavour Violation or Aligned Flavour Violation from multi-Higgs models or special models with vector-like quarks, can be tested directly in Higgs physics. Future direction: CPV Yukawa's...